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ABSTRACT: Proteins display characteristic dynamical signatures that appear to
be universal across all proteins regardless of topology and size. Here, we
systematically characterize the universal features of fast side chain motions in
proteins by examining the conformational energy surfaces of individual residues
obtained using enhanced sampling molecular dynamics simulation (618 free
energy surfaces obtained from 0.94 μs MD simulation). The side chain
conformational free energy surfaces obtained using the adaptive biasing force
(ABF) method for a set of eight proteins with different molecular weights and
secondary structures are used to determine the methyl axial NMR order
parameters (Oaxis

2 ), populations of side chain rotamer states (ρ), conformational
entropies (Sconf), probability fluxes, and activation energies for side chain inter-
rotameric transitions. The free energy barriers separating side chain rotamer
states range from 0.3 to 12 kcal/mol in all proteins and follow a trimodal
distribution with an intense peak at ∼5 kcal/mol and two shoulders at ∼3 and ∼7.5 kcal/mol, indicating that some barriers are
more favored than others by proteins to maintain a balance between their conformational stability and flexibility. The origin and
the influences of the trimodal barrier distribution on the distribution of Oaxis

2 and the side chain conformational entropy are
discussed. A hierarchical grading of rotamer states based on the conformational free energy barriers, entropy, and probability flux
reveals three distinct classes of side chains in proteins. A unique nonlinear correlation is established between Oaxis

2 and the side
chain rotamer populations (ρ). The apparent universality in Oaxis

2 versus ρ correlation, trimodal barrier distribution, and distinct
characteristics of three classes of side chains observed among all proteins indicates a hidden regularity (or commonality) in the
dynamical heterogeneity of fast side chain motions in proteins.

■ INTRODUCTION

The startling diversity in the structure and dynamics of proteins
illustrates the complexity and richness of protein-mediated
biological processes and also demands a molecular-level
understanding of the fundamental principles underpinning
these processes.1−5 The notion that structure and dynamics are
governed by the underlying energy surface underscores the
intricate connection between heterogeneity in functional
dynamical processes and the hierarchical conformational
substates of proteins.6−10 The interactions within proteins
and with surrounding species (such as other proteins, solvent
molecules, and counterions) give rise to a complex energy
landscape resulting in a wide spectrum of dynamics, ranging
from localized atomic vibrations to large-scale collective
conformational transitions.2,7,11,12 The high-frequency harmon-
ic motions do not alter the equilibrium structure of the protein,
while significant structural changes occur during conforma-
tional transitions. These anharmonic, barrier-crossing motions
enable the protein to visit different regions of the conforma-

tional space and thus play critical roles in protein
function.6,7,9−11,13−15 Conformational transitions in proteins
occur at various length- (domain- to side chain-level) and time-
scales (fast (ps−ns) to slow (μs−ms)).1,8,16,17
Many research efforts directed toward understanding the

functional roles of internal motions primarily rely on
experimental techniques that probed the average dynamics
(i.e., dynamics averaged over all residues or probes) of proteins.
For instance, fluorescence spectroscopy measures the average
lifetime or relaxation rate of different fluorophores in a
protein,18−20 neutron scattering experiments determine the
average mean-square displacement of the nonexchangeable
protein hydrogen atoms,2,21,22 and infrared (IR) and Raman
spectroscopies probe the overall vibrational modes of different
functional groups in proteins.23,24 Although these experimental
techniques are non-site-specific, they play critical roles in

Received: August 29, 2013
Published: May 20, 2014

Article

pubs.acs.org/JACS

© 2014 American Chemical Society 8590 dx.doi.org/10.1021/ja5024783 | J. Am. Chem. Soc. 2014, 136, 8590−8605

pubs.acs.org/JACS


unravelling clues about the functional importance of dynamics
and about some universal features in the average dynamics of
proteins. For example, it is now established that the distribution
of the entropy-rich, low-frequency (below 100 cm−1) collective
vibrational modes of proteins follows a universal curve25,26 and
that there exists a universal temperature-dependent harmonic
to anharmonic dynamical transition in proteins.2,14,21,27

In the light of recent progress in the experimental
characterization of site-specific fast dynamics of protein side
chains, it is essential to understand the heterogeneity and
correlations in the side chain conformational fluctuations at
different sites in a protein and to examine the commonality of
these fast internal motions. In this regard, nuclear magnetic
resonance (NMR) spectroscopy has emerged as a powerful
technique to probe the structure and dynamics of backbones
and side chains of proteins.3,5,17,28−42 Recent advances in
isotopic enrichment and biosynthetic approaches to labeling
atoms at specific sites of proteins, together with new pulse
sequences, have opened up new possibilities of investigating
site-specific details of the structure, dynamics, and thermody-
namics of high-molecular weight proteins and protein
complexes in their native and less-populated excited
states.30,31,34,37−50

Site-specific NMR relaxation studies use methyl groups in
proteins as reporters of side chain dynamics.28,31,32,37,38 The
hydrogens and/or carbons of methyl groups in side chains of a
protein are labeled with deuterium (2H) and 13C respectively,
resulting in an isotopically enriched protein consisting of
different methyl spin probes (methyl isotopomers) (CH3,
13CHD2,

13CH2D) spread across different parts of the
protein.28,48 Details of side chain dynamics encoded in the
nuclear Overhauser effects (NOE), longitudinal (T1) and
transverse (T2) relaxation times of 2H and 13C spins of enriched
methyl groups can be extracted using the “model-free”
formalism of Lipari and Szabo, resulting in motional parameters
that quantify the rates and amplitudes of motions of these
methyl groups.28,32,51−53

Specifically, the square of an order parameter, O2, quantifies
the amplitude of methyl group motion, while τ measures the
relaxation time associated with the motion. The reorientational
dynamics of the symmetry axis and the rotation of the C−H
bond vectors about the symmetry axis are the two major
contributions that determine methyl dynamics. Assuming that
these two degrees of freedom are uncoupled, O2 can be written
as a product of Orot

2 and Oaxis
2 , where Orot

2 is the order parameter
for rotation about the methyl symmetry axis, and Oaxis

2 is that
for motion of the symmetry axis. Orot

2 = 1/9 for a methyl group
that rotates completely and possesses ideal tetrahedral
geometry, and in the analysis of NMR experimental data, this
value of Orot

2 is commonly assumed.11,54

Molecular dynamics simulations provide atomistic insights
into molecular motions occurring in a time window accessible
to site-specific NMR relaxation experiments, and the relaxation
data obtained from these techniques are complementary to
each other.54−61 In MD simulation, the atomic interactions are
described by an empirical potential energy function, which
describes both covalent and noncovalent interactions using a
suitable choice of force field parameters. The atomic forces
derived from this potential function are used to solve the
equations of motion, thereby tracking dynamical trajectories of
individual atoms in the system.1,54,56,57,59−61 The spatial and
temporal correlations and other equilibrium properties of the
system determined from 10 to 100 ns MD trajectories can be

used to provide atomistic insights into NMR relaxation
data.1,54,56,57,59−61

There are at least two approaches to compute NMR
motional parameters from MD trajectories.38,41,54,56,57,59−62 In
the first approach, the reorientational time correlation functions
(TCFs), C(t), of the C−H bond vectors of methyl groups are
computed, and the motional parameters Oaxis

2 and τ are derived
using the following relationships:
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where μ̂ is a unit vector along the C−H bond and P2(x) = (3x2

− 1)/2 is the second Legendre polynomial. The other approach
is to monitor the time evolution of θ and ϕ, here π − θ and ϕ
denote the polar and azimuthal angles determining the
orientation of the symmetry axis of a given methyl group
(shown in Figure 1), to determine the equilibrium orientational

distribution, P(θ, ϕ). Oaxis
2 can be determined from P(θ, ϕ)

using the following relationship.
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By expressing the Cartesian coordinates in terms of the
spherical polar coordinates, the averages (denoted by the
angular brackets) of different squared terms in the above
equation can be calculated using the equilibrium probability
distribution, P(θ, ϕ).11,63−65

Both of the above-mentioned approaches should, in
principle, give accurate estimates of Oaxis

2 and τ, provided that
the force field parameters are accurate enough to capture the
protein dynamics realistically and that the conformational
sampling is good. In practice, it is not possible to achieve
complete sampling of the allowed conformational substates of a
protein (even of a moderate size) in a typical 10−100 ns MD
simulation. Hence, the estimates of the NMR motional
parameters obtained from simulations with inadequate
sampling of phase space are subject to sampling errors.59 In
the first approach above, lack of convergence of TCFs obtained
from MD trajectories is the manifestation of the sampling
errors. Consequently, multiple simulations may result in
different TCFs with different values of Oaxis

2 for a given methyl

Figure 1. Schematic representation of the angular coordinates θ and ϕ
determining the orientation of the symmetry axis (unit vector along
C1−C2 bond vector) of a methyl group in a protein. C1 is the methyl
carbon and C2, C3, C4 are the consecutive heavy atoms attached to C1.
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side chain, thus giving rise to average Oaxis
2 values with

significant uncertainty. In the second approach, insufficient
conformational sampling results in P(θ, ϕ) that deviates from
the equilibrium distribution. Hence, with both of the above
methods the incomplete sampling of the side chain conforma-
tional space gives rise to poor estimates of Oaxis

2 and associated
relaxation times. In contrast, the protein backbone is in many
simulations relatively rigid, exhibiting only restricted motion,
and so the extent of conformational space to be sampled by a
backbone amide bond vector is in these cases very limited, the
backbone degrees of freedom do not suffer from sampling
issues, and a 10−100 ns MD trajectory is sufficient to sample
the backbone conformational space. Thus, the above
approaches have worked well for backbone relaxation
parameters.59,66

A computational approach that efficiently circumvents the
sampling problem by using enhanced sampling methods was
developed recently to determine sampling error-free side chain
Oaxis

2 from molecular dynamics trajectories.67 Using calmodulin
as a model system, a nonlinear relationship was established
between Oaxis

2 and the populations of side chain rotamer states
which was then used to reconstruct side chain conformational
free energy surfaces from Oaxis

2 .67 In the present contribution,
we extend this method to a set of eight proteins with different
secondary structures and molecular weights to examine whether
there is a universal nature of the correlation between methyl
symmetry axis order parameters (Oaxis

2 ) and populations of side
chain rotamer states. The results indicate that, regardless of the
molecular weight and topology of the proteins concerned, a
unique correlation exists between the side chain conformational
free energy surfaces and Oaxis

2 which is likely to be universal
among proteins. Each methyl-containing residue type in any
protein follows a characteristic nonlinear curve in the parameter
space defined by Oaxis

2 and the populations of the rotamer states.
The universality of this correlation involves a trimodal barrier
distribution, and distinct characteristics of three classes of side
chain observed in all proteins indicate a regularity (or
commonality) of the dynamical heterogeneity in fast side
chain motions in proteins.

■ SIMULATION DETAILS

Model Systems. A set of eight proteins with different
secondary structures (all-alpha, all-beta, and mixed) and
molecular weights (8.1−23.7 kDa) was selected. The PDB
IDs of these proteins are 1EGL (70 residues, 8.1 kDa, 15%
helical),68 1UBQ (76 residues, 8.5 kDa, 23% helical),69 FNfn10
(93 residues, 9.93 kDa, 0% helical), 1SHF (2 × 59 residues,
13.4 kDa, 5% helical),70 1LIB (131 residues, 14.5 kDa, 16%
helical),71 1J52 (154 residues, 18.6 kDa, 78% helical),72 1A45
(173 residues, 20.9 kDa, 5% helical),73 3KF1 (2 × 99 residues,
23.7 kDa, 7% helical).74 The coordinates of FNfn10 were taken
from 1FNF.59 The choice of these proteins was based on the
availability of previous experimental and molecular dynamics
(MD) simulation studies.75−77 Among the eight model proteins
studied here, the experimental Oaxis

2 values are available for six
of them while the remaining two were chosen from the extreme
ends of the spectrum of the secondary structure composition:
myoglobin (primarily an α-helical protein) and Gamma F
Crystallin (primarily a β-sheet protein). Thus, the selected set
of proteins reasonably covers a wide range of secondary
structures and molecular weights while remaining within the
limits of computational capabilities.

Molecular Dynamics Simulation. MD simulations of
these proteins were carried out using NAMD2.878 with the
CHARMM27 all-atom79 and TIP3P80 water force fields. For
each model system, the heteroatoms were first removed from
the corresponding PDB structure and the protein was solvated
in a TIP3P80 water box of suitable dimensions: 54 × 47 × 49 Å3

(1EGL), 40 × 42 × 46 Å3 (1UBQ), 45 × 59 × 61 Å3 (FNfn10),
44 × 47 × 42 Å3 (1SHF), 61 × 55 × 47 Å3 (1LIB), 44 × 57 ×
60 Å3 (1J52), 58 × 54 × 80 Å3 (1A45), and 54 × 48 × 58 Å3

(3KF1). After removing the water molecules that were in hard
contact with the protein, all the model systems were subjected
to energy minimization using the conjugate gradient method
followed by 3 ns of NPT equilibration MD runs at 1 atm
pressure and at 300 K. Subsequently, MD simulations were
performed in the NPT ensemble at 300 K and 1 atm pressure
using a Langevin thermostat and barostat with a damping
coefficient of 5 ps−1. Each simulation consisted of 2 ns
equilibration followed by a 10 ns production run. The
equations of motion were integrated with a time step of 1 fs.
The nonbonded pair-interaction potential was truncated at 12
Å and smoothed between 10 and 12 Å using a cubic switching
function. Periodic boundary conditions were applied. Electro-
static interactions were computed using the particle mesh
Ewald (PME) method81 with a real space cutoff of 13 Å, and
the reciprocal space interactions were computed on grids (using
sixth-degree B-splines) of suitable dimensions: 58 × 50 × 54
(1EGL), 44 × 46 × 50 (1UBQ), 50 × 64 × 66 (FNfn10), 48 ×
50 × 46 (1SHF), 64 × 58 × 50 (1LIB), 45 × 60 × 64 (1J52),
60 × 56 × 82 (1A45), and 56 × 50 × 60 (3KF1). Four further,
independent, 10 ns production runs were also performed
starting from different initial velocities.

Adaptive Biasing Force Method. The adaptive biasing
force (ABF) method was used to accelerate the side chain
conformational sampling, thereby providing sampling error-free
estimates of the conformational free energy landscapes of the
methyl-bearing side chains of the proteins. The statistical
mechanical theory underlying the ABF method is briefly
discussed here. Consider an N-particle system with a
Hamiltonian, H(R,P) = U(R) + T(P), where R and P denote
the set of Cartesian coordinates and momenta of all particles,
respectively, and U(R) and T(P) represent the potential and
kinetic energies of the system. To determine the potential of
mean force, F(ϕ), as a function of a chosen reaction coordinate,
ϕ, the Cartesian coordinates are first transformed into a set of
generalized coordinates (ϕ, Q), where Q denotes the set of
remaining generalized coordinates. The derivative of F(ϕ) with
respect to ϕ is expressed as follows:

ϕ
ϕ

ϕ
ϕ ϕ

= ∂
∂

−
∂ | |

∂
= −⟨ ⟩

ϕ
ϕ ϕ

F U Q
k T

J
f

d ( )
d

( , ) 1 ln

B (6)

where J is the Jacobian associated with the transformation from
the Cartesian coordinates to the generalized coordinates, kB is
the Boltzmann’s constant, ⟨fϕ⟩ϕ is the average force acting along
the reaction coordinate, ϕ, determined at a given value of ϕ,
and the angular brackets denote the statistical averages.82−85 In
the ABF method, the reaction coordinate ϕ is divided into
small windows of size dϕ, ⟨fϕ⟩ is computed for each bin during
the course of the simulation, and a biasing force proportional to
⟨fϕ⟩ϕ is introduced in the dynamics to generate uniform
sampling along the chosen reaction coordinate.82−85

The Collective Variables Module82−85 implemented in
NAMD2.8 was used for performing the ABF calculations.
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The torsional angle, ϕ (shown in Figure 1), of any given
methyl-containing side chain was selected as the reaction
coordinate. The mean force as a function of ϕ was accumulated
in bins of width 1° from a total simulation time of 65 ns. The
convergence of the free energy profiles was examined by
monitoring the time evolution of a convergence quantity, ζ,
defined as follows:

∑ζ ϕ ϕ= + Δ −
ϕ π

π

=−N
F t t F t

1
[ ( , ) ( , )]2

(7)

where N is the number of bins used to partition the ϕ space,
F(ϕ, t) and F(ϕ, t+Δt) are the free energy profiles of a given
side chain calculated at two adjacent time windows, t and t +
Δt, respectively, and Δt was set to 7.2 ns in our calculations.
That is, the free energy profiles for all methyl-containing
residues were recorded at regular intervals of 7.2 ns along the
ABF trajectory and the value of ζ was monitored as a function
of t (here t = Δt,2Δt,3Δt,...,nΔt, and n is an integer chosen such
that nΔt corresponds to the total ABF trajectory length). ζ was
observed to decrease to a value close to zero with increasing t,
and the conformational sampling is considered complete when
ζ is less than a set threshold value (0.05 kcal/mol) for all
residues, as reported elsewhere.67

Oaxis
2 and Conformational Entropy from Free Energy

Profiles. We have calculated Oaxis
2 of the protein side chains

using two independent methods. In the first, the free energy
profiles, F(ϕ), obtained from the ABF calculations were used to
determine Oaxis

2 . The angular distribution function, P(θ, ϕ) (θ
and ϕ are defined in Figure 1), is calculated from F(ϕ) using
the following relationship:

∫ ∫
θ ϕ

θ θ ϕ
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Here, θ0 is the equilibrium value of θ, σ/(β)1/2 is the width of
the Gaussian distribution characterizing the fluctuations of θ
around θ0, β = 1/kBT, kB is the Boltzmann’s constant and T is
the temperature. The values of θ0 and σ for each residue were
determined by fitting the distribution of θ (Figure 2) obtained
from the MD trajectories with a Gaussian function. The
Cartesian coordinates of the unit vector along the symmetry
axis of a given methyl group can be expressed in terms of θ and
ϕ as follows: x = sin(θ)cos(ϕ), y = sin(θ)sin(ϕ), and z =
−cos(θ). Given P(θ, ϕ) and x, y, z in terms of θ and ϕ, it is
straightforward to determine Oaxis,ABF

2 using eq 5 and by
computing the squared averages appearing in eq 5 as follows:

∫ ∫
α θ ϕ ω θ ϕ

α θ ϕ ω θ ϕ θ ϕ θ θ ϕ

⟨ ⟩

=
π

π

π

−
P

( , ) ( , )

( , ) ( , ) ( , )sin d d
0 (9)

where α and ω can be x, y, or z. In the second method, Oaxis,MD
2

was computed directly from the nonaccelerated MD
trajectories. To do this, translational and rotational motions
of a given protein were first removed by superimposing each
snapshot of the trajectory onto the reference structure. To
obtain Oaxis,MD

2 of any given methyl group, the time evolution of
the x, y, and z components of the unit vector along the
symmetry axis was used to compute time averages of the
squared terms in eq 5. The order parameter values were
obtained for each independent MD run performed, and Oaxis,MD

2

reported here is an average over all MD runs.

The side chain conformational entropy was computed using
the following equation:

∫ ∫ θ ϕ θ ϕ θ θ ϕ= −
π

π

π

−
S k P P( , ) ln ( , ) sin d dconf B

0
(10)

P(θ, ϕ) defined in eq 8 was used in the above equation to
calculate Sconf for each residue.

■ RESULTS AND DISCUSSION
First, we emphasize that most of the results reported in the
following sections were obtained from the free energy profiles
determined using the ABF method.

Free Energy Profiles. Figure 2 shows scatter plots of θ/ϕ
distributions (from direct MD simulations) and free energy
profiles (from the ABF calculations) for a few representative
side chains that do not suffer from sampling issues. The θ/ϕ
scattered data were calculated from a set of five independent 10
ns trajectories obtained using nonaccelerated MD simulations.
The bend angle, θ, is restricted to a narrow window around
110° for all residues while the dihedral angle, ϕ, is distributed
between ϕ = 180° and ϕ = −180°. The data points are
clustered around specific values of ϕ that correspond to the
most preferred side chain conformations. The minima on the
corresponding free energy profiles are located at ϕ values at
which the clustering of data is observed in the θ/ϕ scattered
plots. The spread and density of the clustered data points

Figure 2. Scatter plots of θ/ϕ obtained from five 10 ns MD
trajectories and conformational free energy profiles computed using
the ABF method (solid line) shown for representative side chains of
proteins: ubiquitin (black), HIV-1 protease (red), myoglobin (blue),
1A45 (violet) and FNfn10 (green).
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correlate with the width and depth of the corresponding
rotamer states, respectively. Also, the absence of data points
between two adjacent clusters indicates the presence of a free
energy barrier between these rotamer states. The similarity
between the MD and ABF results (at least for well-sampled
residues) together with the convergence analysis (see
Simulation Details section) indicates the reliability of the
computed free energy profiles. In a typical short MD
simulation, the low-energy conformations dominate the
Boltzmann distribution, and there is incomplete sampling of
the conformations close to the barrier, preventing the
determination of the exact barriers from the distributions
obtained from MD simulations.
The conformational free energy profiles of all methyl groups

except those in alanine residues consisted of three stable
rotamer states: gauche+ (denoted here as g+) (ϕ ≈ 60 ± 10°),
gauche− (g−) (ϕ ≈ −60 ± 10°) and trans (t) (ϕ ≈ ±180°). The
stability of each rotamer state and the magnitudes of the energy
barriers separating any two adjacent rotamer states vary,
depending upon the local environment and the chemical nature
of the residues to which the methyl groups are attached.86−89

Since the methyl groups in ALA residues are directly attached
to the backbone, the symmetry axes of these methyl groups are
expected to exhibit restricted dynamics within a rotamer state
(either in g+ or g− state). For all ALA residues a single cluster of
data observed in the θ/ϕ scatter plots with a single deep well in
the corresponding free energy profiles establish this fact (Figure
S1 - Supporting Information [SI]).
Figure 3 shows the free energy profiles and θ/ϕ scatter plots

for a few representative side chains that inadequately sampled

the conformational space during MD simulations. The
comparison of the MD and ABF results demonstrates that
some rotamer states are indeed not sampled in MD
simulations. F(ϕ) computed using the ABF method for these
residues (Figure 3) indicates three minima corresponding to
three stable rotamer states, with one or two of these states not
being visited during the course of the MD simulations. It was
observed that for each system ∼40% of methyl-containing
residues were “well-behaved” (i.e., they visit all rotamer states in

an ensemble of five independent 10 ns MD trajectories) while
the remaining residues suffered from sampling issues to
differing degrees.

Barrier Distribution. Universal Trimodal Barrier Distri-
bution. We now examine the distribution of barriers (ΔF)
separating side chain rotamer states on the free energy surfaces
obtained from the ABF simulations. These barriers determine
the kinetics of conformational transitions of side chains in
proteins.6−10,90 Each rotamer state is surrounded by two
barriers (one each for forward and reverse rotamer transitions),
and thus there are six activation energies for any given side
chain (excluding ALA residues). Figure 4 shows the distribution

of free energy barriers, P(ΔF), obtained for all proteins
investigated in this study. The corresponding distributions for
individual proteins are provided in the SI (Figure S2).
The barrier distribution shows three features: an intense peak

at ∼5 kcal/mol and two shoulders, at ∼3 kcal/mol and ∼7.5
kcal/mol. This trimodal distribution of barrier heights is
universal among all proteins studied here (Figure S2 in the SI),
indicating that some barriers are more favored than others by
proteins to maintain a balance between their conformational
stability and flexibility; 39% of barriers fall between 4 and 6
kcal/mol, while 25% and 36% of barriers are lower than 4 kcal/
mol and greater than 6 kcal/mol, respectively. A side chain with
all six barrier heights lower than 4 kcal/mol (first peak in the
barrier distribution) is expected to have higher conformational
flexibility, while a more rigid side chain would have all barriers
higher than 6 kcal/mol. However, an examination of the barrier
heights for individual residues reveals that it is rare that all six
barrier heights of a given residue contribute to one single peak
or shoulder in the barrier distribution; most side chains have
barrier heights spread between two or three of the features.

Fourier Expansion of Free Energy Profiles. In order to
examine the origin of the trimodal distribution of side chain
conformational barriers in proteins, the calculated free energy
profiles were decomposed into 1-, 2-, and 3-fold components
by fitting them using the following truncated Fourier
expansion:

∑ϕ ϕ δ= Δ +
Δ

− −
=

F E
E

n( )
2

[1 cos ( )]
n

n
n0

1

3

(11)

where δn is the phase angle and ΔE0 and ΔEn are the
coefficients of the cosine expansion.91 A few representative free
energy profiles fitted with the above equation are shown in
Figure S3(a) (SI). The physical interpretation of different terms

Figure 3. Scatter plots of θ/ϕ obtained from five 10 ns MD
trajectories and conformational free energy profiles computed using
ABF method (solid line) shown for representative side chains that
exhibit poor conformational sampling during MD simulation:
ubiquitin (black), HIV-1 protease (red), myoglobin (blue), 1A45
(violet), and FNfn10 (green).

Figure 4. Distribution of free energy barriers of all methyl-containing
residues of all proteins studied.
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in the above equation is well-established: the 3-fold term is due
to steric interactions arising from bond−bond repulsion, the 1-
fold term is mainly due to dipolar and steric interactions, while
the 2-fold term is due to charge delocalization between lone
pair orbitals and the rotating bonds.91 The absolute values of
the coefficients ΔE1, ΔE2, and ΔE3 are the measures of the
barriers in the 1-, 2-, and 3-fold profiles, respectively. The
distribution of the absolute values of ΔEn shown in Figure
S3(b) (SI) also reasonably follows a trimodal distribution
similar to the overall barrier distribution shown in Figure 4
despite the fact that P(ΔF) and P(ΔEn) represent the
distributions of two different quantities (ΔF is a measure of
the overall barrier while ΔEn denotes the barrier on the n-fold
[n = 1,2,3] Fourier component).
The statistics of the relative contributions of 1- to 3-fold

terms to any given ΔF and to any peak in P(ΔF) are likely to
have direct implications for the physical origin of the trimodal
distribution of conformational barriers. Consider a barrier ΔF
between a free energy minimum (F(ϕmin) at ϕ = ϕmin) and a
maximum (F(ϕmax) at ϕ = ϕmax). The barrier ΔF = F(ϕmax) −
F(ϕmin) can be written as a sum of barrier contributions arising
from the 1- to 3-fold Fourier components as follows: ΔF = ΔF1
+ ΔF2 + ΔF3, where ΔFi = Fi(ϕmax) − Fi(ϕmin) is the barrier
contribution from the corresponding i-fold (i = 1,2,3) Fourier
component Fi(ϕ). The ratio ΔFi/ΔF gives a quantitative
measure of the relative contribution of the i-fold term to a given
conformational barrier. The ratio ΔFi/ΔF can be postive or
negative, depending upon whether the i-fold interaction term is
involved in barrier enhancement (ΔFi > 0) or reduction (ΔFi <
0), respectively. Given these relative contributions, it becomes
straightforward to examine which of the Fourier components
chiefly contributes to different peaks in P(ΔF). Figure 5 shows

the distribution of ΔFi/ΔF for 1-, 2-, and 3-fold Fourier
components plotted separately for ΔF belonging to different
peaks in P(ΔF). It is observed that ΔF3 takes only positive
values between 2 kcal/mol and 7 kcal/mol and P(ΔF3) exhibits
two major peaks at ΔF3 ≈ 4.2 kcal/mol and at ΔF3 ≈ 6 kcal/
mol (Figure 5d). In contrast, ΔF1 and ΔF2 take both positive
and negative values between −3.0 and 4 kcal/mol with a broad
P(ΔF1) distribution centered around ΔF1 = 0. P(ΔF2) is also
almost centered around zero but exhibits two peaks at ΔF2 = ±
1 kcal/mol.
It is evident from P(ΔFi/ΔF) distributions (Figure 5a−c)

that the 3-fold term representing the steric interactions mainly

contributes to the peaks in P(ΔF). P(ΔF1/ΔF) and P(ΔF2/
ΔF) distributions corresponding to the first peak (0.3 kcal/mol
≤ ΔF ≤ 3.6 kcal/mol) of P(ΔF) are peaked at (ΔF1/ΔF) =
(ΔF2/ΔF) = −0.25 and ΔF1 and ΔF2 are mostly negative,
indicating that the 1- and 2-fold terms play a catalytic role in
reducing the overall barrier, leading to low barriers on the free
energy profiles. In contrast, P(ΔF1/ΔF) and P(ΔF2/ΔF)
corresponding to the third peak (6.3 kcal/mol < ΔF ≤ 12
kcal/mol) are shifted to the positive side with a sharp peak at
(ΔF1/ΔF) = (ΔF2/ΔF) = 0.15 suggesting that all 1- to 3-fold
terms provide additive positive contributions to ΔF, leading to
high barriers (or rate-limiting barriers) on the free energy
surface. Similarly, for the second peak (3.6 kcal/mol < ΔF ≤
6.3 kcal/mol) in P(ΔF), the 1- and 2-fold terms provide both
positive and negative contributions (almost equally) to the
overall ΔF.
Although the truncated Fourier expansion approach provides

insights into the role of important interactions in determining
the conformational barriers, the original theoretical interpreta-
tions were formulated on the basis of quantum chemical
calculations on simple organic molecules in the gas phase91

whereas F(ϕ) reported in the present study were obtained for
protein solutions. The exact contributions of nonbonded
interactions in a condensed phase to 1-, 2-, and 3-fold Fourier
components and to the overall F(ϕ) remain unclear. A detailed
further investigation of the contributions of van der Waals and
electrostatic interactions to the conformational barriers is much
needed to shed more light on the trimodal nature of P(ΔF),
but it is beyond the scope of this paper.

Calculated Barrier Versus Experimental Activation Energy.
Although NMR, neutron scattering, and theoretical studies
report on barriers to methyl rotation in proteins, the trimodal
distribution of barriers to methyl symmetry axis dynamics in
proteins is yet to be observed experimentally.92,93 However,
caution must be exercised when comparing the calculated
P(ΔF) reported in Figure 4 with the corresponding quantity
obtained from experiment for the following reasons. Most
experiments only determine a single activation energy per
residue, from the temperature dependence of the correspond-
ing terminal methyl relaxation time, whereas P(ΔF) reported in
Figure 4 includes all six barriers in the corresponding free
energy surface controlling the dynamics of the methyl
symmetry axis of any given residue. Moreover, some side
chain conformational transitions may occur between a few
most-preferred conformers, and some rotamer states may not
be visited by a side chain within the experimental time scales, as
has been seen for some methyl-containing residues.94 In such
cases, the activation energy estimated from experiment does
not have contributions from barriers that surround the
unpopulated rotamer states.
In order to make a sensible comparison with the

experimental activation energies, the average barrier, ⟨ΔF⟩ABF,
was calculated for each methyl group from the rates of
transitions across the six barriers separating different rotamer
states using the following equation:54,92,95

∑⟨Δ ⟩ = −
=

−Δ
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟F k T ln

1
6

e
i

F k T
ABF B

1

6
/i B

(12)

where kB is the Boltzmann’s constant, T is the temperature, and
ΔFi is the ith (i = 1,2,...,6) barrier on the corresponding
conformational free energy surface. The experimental activation
energies, ⟨ΔF⟩EXP, were obtained from the reported exper-

Figure 5. Distributions of ΔFi/ΔF for the (a) first peak, (b) second
peak, (c) third peak of P(ΔF) and (d) ΔFi are shown.
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imental methyl relaxation times (τe) using the following
transition state theory expression:96,97

τ
⟨Δ ⟩ =

⎛
⎝⎜

⎞
⎠⎟F k T

k T
h

lnEXP B
B e

(13)

where h is the Planck’s constant. The comparison of ⟨ΔF⟩EXP
and ⟨ΔF⟩ABF is meaningful only for the fast residues that sample
all rotamer states within the NMR experimental time scale. In
the present study, by using the experimental distribution of τe
(Figure S4 - SI) and Oaxis,EXP

2 , we define fast residues as those
with τe≤ 40 ps and Oaxis,EXP

2 ≤ 0.4; these are expected to
undergo rapid rotameric transitions between all rotamer states.
The correlation between ⟨ΔF⟩ABF and ⟨ΔF⟩EXP is shown in
Figure 6 for fast methyl-bearing residues. A significant number
of data points located near the diagonal line indicating a
reasonable correlation between ⟨ΔF⟩ABF and ⟨ΔF⟩EXP.

A promising new, X-ray diffraction-based experimental
technique that measures the noise-filtered electron densities
around side-chain dihedral angles is beginning to provide useful
information on the side-chain conformational distributions of
proteins in crystals.98,99 The side-chain dihedral angle-depend-
ent electron density obtained from this technique for different
methyl-containing residues reveals information on different
possible conformers and associated probabilities for these side
chains in proteins: the dihedral angle at which the electron
density is highest corresponds to the most populated
conformer, while weak electron densities correspond to less
populated conformers. The most direct way to validate the
multimodal distribution of barriers observed here is to compare
the conformational distributions of methyl-containing residues
in proteins derived from this electron density-based approach.
Since X-ray diffraction-based electron densities are available for
five of the model systems studied here, we have calculated the
distributions of electron densities as a function of ϕ for all
methyl-containing residues using the RINGER program.98,99

Figure S5 (SI) shows the charge density as a function of ϕ for a
few representative residues together with the free energy
profiles obtained from the ABF method. A reasonable
correlation is evident between the electron density profiles
and the free energy profiles: the maxima in the electron density

profiles coincide with the minima in the corresponding free
energy profiles. Although the heterogeneous distribution of
electron density barriers separating different rotamer states is
evident, to better understand the side-chain conformational
barrier distributions in proteins a precise determination of the
conformational free energy profiles from the corresponding
electron density distributions on per-residue basis is much
needed.

Barrier Distribution for Different Residue Types. Figure 7
shows barrier distributions for individual residue types, and
Table 1 provides statistics on the contributions of barriers
associated with different rotameric transitions to the peaks in
P(ΔF) for all residue types. The barriers for all MET residues
are less than 5 kcal/mol and thus lead to the first shoulder of
the overall barrier distribution (see Figure 4). The P(ΔF) for
MET consists of two peaks: the peak at ∼2 kcal/mol is due to
the barriers between the trans and gauche conformers while the
barriers between g+ and g− conformers lead to the other peak at
∼4.5 kcal/mol100 (Table 1 and Figure 7b). Since the number of
barriers between the trans and gauche states is twice that
between the g+ and g− states, the intensity of the peak at ∼4.5
kcal/mol is almost half that of the peak at ∼2 kcal/mol. The
smaller barriers for the symmetry axis dynamics of MET
methyls observed here suggest that MET methyls experience
less steric hindrance in proteins, leading to fast transitions
between different conformers.100

The distributions for LEU prochiral methyls (LEUδ1 and
LEUδ2) consist of three peaks at ∼3, ∼ 5, and ∼7 kcal/mol. For
LEUδ2 methyls, the activation barriers for t → g+ and g− → g+

rotameric transitions are relatively high (ΔF > 6 kcal/mol) and
they lead to the peak at ∼7 kcal/mol while the barriers for t ⇌
g− transitions lead to the peak at ∼3 kcal/mol and the
remaining barriers form the peak at ∼5 kcal/mol. Similarly, for
LEUδ1 methyls, t → g− and g+ → g− barriers lead to the peak at
∼7 kcal/mol, while the barriers for t ⇌ g+ transitions lead to
the peak at ∼3 kcal/mol, and the remaining barriers lead to the
peak at ∼5 kcal/mol. Although P(ΔF) for LEU prochiral
methyls are expected to be identical, comparison of the
distributions for LEUδ1 and LEUδ2 indicates that P(ΔF) for
LEUδ1 has sharp peaks, while the peaks are relatively broader
for LEUδ2. Also, the fraction of barriers with ΔF > 8 kcal/mol
or ΔF < 3 kcal/mol is higher in LEUδ2 than in LEUδ1. These
differences can be attributed to variation in the nonbonded
interactions arising from the microenvironment, and a closer
examination reveals that the distributions of near-neighbor
heavy atoms around the carbons of LEUδ1 and LEUδ2 methyl
groups of some LEU residues can vary significantly (Figure S6 -
SI). The broader distribution for LEUδ2 residues suggests a
greater sensitivity of these conformational free energy profiles
to the nonbonded interactions. Thus, LEUδ2 is expected to be
dynamically more heterogeneous than LEUδ1 with a broader
distribution of Oaxis

2 . A detailed discussion on the influences of
P(ΔF) on Oaxis

2 distributions and ⟨Oaxis
2 ⟩ is presented in a later

section. The difference in the conformational sensitivity of
LEUδ1 and LEUδ2 to microenvironmental changes observed
here is in line with the experimental observation that these
prochiral methyls respond differently to external magnetic fields
with different relaxation parameters.11,45,101,102

The distribution for ILEδ is also multimodal, with a broad
peak below 4 kcal/mol and two more peaks at ∼5.5 and ∼8.5
kcal/mol. The barriers for g− ⇌ g+ rotameric transitions lead to
the peak at ∼8.2 kcal/mol, while the barriers for t ⇌ g+

transitions mainly contribute to the peaks observed below 4

Figure 6. Correlation between ⟨ΔF⟩ABF and ⟨ΔF⟩EXP for fast residues
is shown. The straight lines (violet, ⟨ΔF⟩EXP = ⟨ΔF⟩ABF; cyan, ⟨ΔF⟩EXP
= ⟨ΔF⟩ABF − 0.6 kcal/mol; magenta, ⟨ΔF⟩EXP = ⟨ΔF⟩ABF + 0.6 kcal/
mol) are shown as guides to eyes.
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kcal/mol. Among residues with three or more peaks in P(ΔF),
only ILEδ exhibits a relatively broad distribution, with a peak at
a relatively high value of ΔF (∼8.5 kcal/mol) and with a
significant number of barriers greater than 8.5 kcal/mol. A
broad P(ΔF) implies that ILEδ is expected to show a high
degree of dynamic heterogeneity with a relatively broad
distribution of Oaxis

2 .
The P(ΔF) distributions for VALγ1, VALγ2, THRγ2, and ILEγ2

consist of only two peaks at ∼5 and ∼8 kcal/mol. The barriers
for t ⇌ g− transitions lead to the peak at ∼8 kcal/mol for
VALγ1, THRγ2, and ILEγ2 methyl groups, while the remaining

barriers lead to the peak at ∼5 kcal/mol. The features of these
bimodal distributions differ among these residues: P(ΔF) is
relatively broad for THRγ2 and VALγ2, while it is sharply peaked
for ILEγ2. The differences between P(ΔF) of VAL prochiral
methyls (VALγ1 and VALγ2) can be attributed to the variation
of their microenvironment as shown in Figure S6 (SI). The
absence of a peak at ∼3 kcal/mol suggests that the average Oaxis

2

for these residues is likely to be greater than other methyl-
containing residues (see later).
A common pattern that emerges from the above analyses of

the distributions of barriers for individual residue types is that
all δ-methyls in proteins exhibit a trimodal P(ΔF) with each of
three pairs of rotameric transitions (among six possible
transitions per residue) contributing to different peaks in
P(ΔF). In contrast, all γ-methyls exhibit a bimodal P(ΔF) with
a pair of rotameric transitions contributing to the peak at ∼8
kcal/mol and the remaining transitions contributing to the
other peak at ∼5 kcal/mol. The peak in P(ΔF) observed at ∼8
kcal/mol for all residue types (except MET) corresponds to
slower rotameric transitions involving crossing of the rate-
limiting barriers, while the peak at ∼3 kcal/mol observed in
P(ΔF) of δ-methyls corresponds to faster conformational
transitions. The following empirical relationship between the
peak positions in the barrier distributions and the average
thermal energy per degree of freedom at room temperature
(i.e., kBT/2 at T = 300 K) is evident from P(ΔF): ΔFn =
9n(kBT/2), where ΔFn is the nth peak position with n = 1, n = 2,
and n = 3 corresponding respectively to the first, second, and
third peaks in P(ΔF); kB is the Boltzmann’s constant; and the
factor 9 is due to the nine X−C−C−Y (Y denotes the methyl
carbon in the present study) dihedral contributions to the total
conformational free energy associated with the rotation about a
given C−C bond.

Figure 7. (a) Distribution of free energy barriers for different types of residues of all proteins studied. (b) P(ΔF) for specific side chain rotameric
transitions shown for different residue types.

Table 1. Contributions of Barriers for Specific Side Chain
Rotameric Transitions to Different Peaks in P(ΔF) for
Different Residue Types in Proteins

class
residue
type

peak I ∼3 kcal/mol
(∼2 kcal/mol for

MET)

peak II ∼5 kcal/mol
(∼4.5 kcal/mol for

MET)

peak III
∼7.5

kcal/mol

Class 1 VALγ1 − g+ ⇌ g− g− ⇌ t
g+ ⇌ t

VALγ2 − g− ⇌ t g+ ⇌ g−

g+ ⇌ t
THRγ2 − g+ ⇌ g− g− ⇌ t

g+ ⇌ t
ILEγ2 − g+ ⇌ g− g− ⇌ t

g+ ⇌ t
Class 2 LEUδ1 g+ ⇌ t g− → g+ t → g−

g− → t g+ → g−

LEUδ2 g− ⇌ t g+ → g− t → g+

g+→ t g− → g+

ILEδ g+ ⇌ t g− ⇌ t g+ ⇌ g−

Class 3 MET g− ⇌ t g+ ⇌ g− −
g+ ⇌ t
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Average Barrier Distribution. The residues that exhibit
trimodal P(ΔF) are grouped into “Class-2”, while those with a
bimodal P(ΔF) (excluding MET) are grouped as “Class-1”.
“Class-3” contains the MET residues. Figure 8 shows the

distribution of ⟨ΔF⟩, which is the average of six barriers per
residue, and it was calculated separately for each residue,
plotted for different classes of side chain: Class-1 (VALγ1,
VALγ2, THRγ2, and ILEγ2), Class-2 (LEUδ1, LEUδ2, and ILEδ),
and Class-3 (MET). The P(⟨ΔF⟩) distributions clearly
distinguish these classes; the distribution for Class-2 residues
is peaked around 4.8 kcal/mol, whereas Class-1 residues are
peaked around 6 kcal/mol. Since Class-1 residues contribute
mainly to the second and third peaks of the overall barrier
distribution, their average barrier values are higher than those
for other residue types belonging to other classes. The
observation that ⟨ΔF⟩ is smaller for Class-2 residues than the
side chains of Class-1 implies that the degree of conformational
sampling by Class-2 residues is higher than Class-1, and thus,
for a given Oaxis

2 a Class-2 residue is expected to have a
conformational entropy slightly higher than that of a Class-1
residue. This free energy-based classification of side chains is
consistent with the two-parameter classification (based on Oaxis

2

and Sconf) of side chain dynamics in proteins.115

Barrier Map-Based Classification of Side Chains. The
rotational diffusive motion of a side chain in a particular
rotamer state is influenced by a pair of barriers surrounding that
state. The ith rotamer state (i = 1, i = 2, and i = 3 correspond to
t, g−, and g+ rotamer states, respectively) of a given side chain
has a forward barrier (ΔEif) and a reverse barrier (ΔEir). Let
ΔEmin and ΔEmax denote the smaller and larger of ΔEi

f and ΔEi
r,

respectively. The ith rotamer state is said to be rotationally
diffusive on both sides (i.e., bidirectionally diffusive as shown in
Figure 9c) if both ΔEmin and ΔEmax are small (less than 5 kcal/
mol), nondiffusive or restricted if both ΔEmin and ΔEmax are
high (greater than 6 kcal/mol), and partially diffusive
(unidirectional diffusion as shown in Figure 9b) if one of the
barriers is small (less than 5 kcal/mol) and the other is large.
These different types of side chain rotamer states in proteins
are illustrated in Figure 9.
The ABF-based free energy profiles provide a direct access to

ΔEmin and ΔEmax for all side chain rotamer states. Figure 10a
shows ΔEmin versus ΔEmax (referred to here as the “barrier
map”) for all rotamer states of all methyl-containing residues of
all proteins studied here. Each data point in this “barrier map”
corresponds to a rotamer state. Since ΔEmin ≤ ΔEmax, the data

points are expected to be located only along the diagonal or the
upper diagonal of the plot in Figure 10a. The diagonal and off-
diagonal points represent the rotamer states with iso-energetic
(or symmetric) and unequal (or asymmetric) barriers on either
side, respectively. The degree of deviation from the diagonal
and the closeness to the origin of a given off-diagonal point
measure the unequalness or asymmetry in the barrier heights

Figure 8. Distribution of average free energy barriers for three classes
of side chain of all proteins.

Figure 9. Schematic diagram illustrating different types of side chain
rotamers based on ΔEmin and ΔEmax.

Figure 10. Barrier map representing the variation of minimum energy
barrier (ΔEmin) with maximum energy barrier (ΔEmax) for (a) all
rotamer states (b) high-density (greater than 66.67 (kcal/mol)−2)
regions of ΔEmin/ΔEmax space are shown.
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and the degree of rotational diffusive nature of the
corresponding rotamer state, respectively.
The data for Class-3 (MET) residues (Figure S7 - SI) are

closer to the origin with both ΔEmin and ΔEmax less than 5 kcal/
mol for almost all rotamer states. Two clusters of Class-3
residues are observed: one near the diagonal with ΔEmax =
ΔEmin = ∼2.0 kcal/mol and the second with ΔEmax = ∼4.0 kcal/
mol and ΔEmin = ∼2.0 kcal/mol. The data for Class-1 (VALγ1,
VALγ2, THRγ2, and ILEγ2) residues are widely spread with a
majority of data points with ΔEmin > 5.0 kcal/mol and ΔEmax >
7.0 kcal/mol, while the data for Class-2 (LEUδ1, LEUδ2, and
ILEδ) residues are clustered into two groups: one near the
diagonal with ΔEmax = ΔEmin = ∼5.0 kcal/mol and the other
located around ΔEmax = ∼7.0 kcal/mol and ΔEmin = ∼3.0 kcal/
mol. Though the classification of side chains based on the
values of ΔEmax and ΔEmin is unambiguous for many residues,
some degree of overlap is observed between Class-1 and Class-
2 residues.
Figure 10b shows only the high-density regions of the

“barrier map” depicted in Figure 10a. These high-density
regions were identified by dividing the “barrier map” into 0.3 ×
0.3 (kcal/mol)2 square grids, and only those grids with density
greater than or equal to 66.7 (kcal/mol)−2 are shown in Figure
10b. The Class-3 residues fall in the region where all rotamer
states would be bidirectionally diffusive, whereas most of the
Class-2 residues fall in the region corresponding to unidirec-
tionally diffusive rotamer states. Some Class-2 residues (mainly
LEU residues) falling on the diagonal have bidirectionally
diffusive rotamer states. Most Class-1 residues exhibit restricted
dynamics.
Oaxis

2 Distribution and Experimental Comparison. The
distribution of Oaxis

2 is a good measure of the degree of
dynamical heterogeneity in proteins: the broader the Oaxis

2

distribution the more is the dynamical heterogeneity. Under-
standing the molecular origins of the Oaxis

2 distributions and
how they change with temperature and pressure is a topic of
current interest, but a comprehensive understanding is yet to be
achieved.13,60,103,104 The Oaxis

2 distribution for calmodulin
obtained from site-specific NMR experiments showed a
trimodal Oaxis

2 distribution corresponding to three classes of
residue: J-,ω-, and α-classes.105 The J-class residues have Oaxis

2 ≈
0.3 due to frequent rotameric interconversion between different
rotamer states, while Oaxis

2 ≈ 0.9 for ω-class residues due to their
restricted motion within a rotamer well. The α-class side chains
exhibit restricted motion within a rotamer state with occasional
jumps between different rotamer states, giving rise to Oaxis

2 ≈
0.6.105 The Oaxis

2 distribution for calmodulin was found to be
almost insensitive to the variation of temperature between 288
and 346 K.13 The trimodal distribution of Oaxis

2 was also
observed for calmodulin in a recent molecular dynamics
simulation study.67 A large number of proteins exhibited
multimodal distributions that differ among proteins, indicating
the nonuniversal nature of the Oaxis

2 distribution.11,60

The calculated Oaxis,MD
2 and Oaxis,ABF

2 are compared with the
corresponding experimental values (Oaxis,EXP

2 ) for six systems
studied here,75−77,106−108 and the results are shown in Figure
11. Oaxis,MD

2 correlates reasonably well with Oaxis,EXP
2 and the

estimated correlation coeffcients (0.58−0.87) for these systems
are within the range repored in earlier MD simulation studies of
proteins.41,59,60,65,109 The observation that Oaxis,ABF

2 < Oaxis,EXP
2

for many residues and a fair agreement between Oaxis,MD
2 and

Oaxis,EXP
2 point to the interplay between the kinetic and

thermodynamic factors in the determination of the calculated

Oaxis
2 values. Since the ABF method is devoid of sampling

problems, the conformational distributions derived from the
free energy profiles obtained from this enhanced-sampling
approach represent the thermodynamic equilibrium distribu-
tions, and Oaxis,ABF

2 calculated from these distributions (using eq
5) can be considered as equilibrium values that are free from
kinetic effects. A significant improvement in the correlation
between Oaxis,ABF

2 and Oaxis,EXP
2 is observed (Figure S8 - SI) when

limiting the comparison to only fast side chains (τe ≤ 30 ps and
Oaxis,EXP

2 ≤ 0.4) that are less susceptible to slow rotameric
transitions. A systematic under-estimation of Oaxis,ABF

2 (that is,
Oaxis,ABF

2 < Oaxis,EXP
2 ) observed for all ILEγ2 methyl groups (see

Figure S8 - SI) was earlier attributed to the inaccuracy of the
current empirical force field parameters in describing some side
chain dynamics of proteins.67 However, the Oaxis,MD

2 were
calculated from MD trajectories that suffer from sampling
problems and some rotamer states that are not being visited
during the course of these simulations (see Figure 3). Thus,
kinetic factors play an important role in determining the
apparent side chain conformational distributions and Oaxis,MD

2

(derived from these MD trajectories), which may deviate
significantly from the expected equilibrium distributions and
Oaxis,ABF

2 , respectively. Since Oaxis,EXP
2 obtained from NMR

experiments are also sensitive to picosecond−nanosecond
time-scale motions and some slow rotameric transitions may

Figure 11. Comparison of the calculated (a) Oaxis,MD
2 (b) Oaxis,ABF

2 with
experimental Oaxis,EXP

2 is shown for six out of eight proteins studied
here.
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not be picked up by the experimental Oaxis
2 , a fair correlation

between Oaxis,MD
2 and Oaxis,EXP

2 is justified. There is, of course,
also scope for improvement of the empirical force field
parameters to accurately describe the side chain dynamics,
and this might potentially improve the correlation between the
experimental and calculated order parameters.110−112

Figure 12a shows P(Oaxis,MD
2 ), P(Oaxis,ABF

2 ), and P(Oaxis,EXP
2 ) for

the different proteins under consideration in the present study.
The P(Oaxis,MD

2 ) compares reasonably well with P(Oaxis,EXP
2 ) for

all proteins, and the overall P(Oaxis,MD
2 ) and P(Oaxis,EXP

2 ) (shown
in Figure 12b) exhibit the following similar features: a
maximum at Oaxis

2 ≈ 0.75 and a secondary peak at Oaxis
2 ≈

0.45. However, the individual and overall P(Oaxis,ABF
2 )

distributions differ significantly from the corresponding
experimental and MD distributions. P(Oaxis,ABF

2 ) for all proteins
shows an intense peak at Oaxis,ABF

2 ≈ 0.2−0.3, and some exhibit
secondary peaks at Oaxis,ABF

2 ≈ 0.5−0.6 (3KF1, 1LIB and
FNfn10) and Oaxis,ABF

2 ≈ 0.7 (1UBQ). The overall P(Oaxis,ABF
2 )

exhibits a peak at Oaxis,ABF
2 ≈ 0.2, and the intensity decreases

gradually with increasing values of Oaxis,ABF
2 . The observed

deviation of P(Oaxis,ABF
2 ) from P(Oaxis,EXP

2 ) and P(Oaxis,MD
2 ) can be

attributed again to kinetic effects that play an important role in

the determination of the two latter distributions, while
P(Oaxis,ABF

2 ) is solely governed by thermodynamics.
The P(Oaxis

2 ) for different residue types (shown in Figure
12c) indicate that the Oaxis

2 distributions vary widely among
residue types. Here again, P(Oaxis,MD

2 ) qualitatively reproduces
the essential features of the experimental P(Oaxis,EXP

2 ) for many
methyl-containing residue types: the positions of the most
intense peaks in P(Oaxis,MD

2 ) and P(Oaxis,EXP
2 ) coincide reasonably

well for ILEγ2, LEUδ2, VALγ1, and ILEδ methyl groups. P(Oaxis
2 )

for the prochiral methyls of LEU and VAL residues differ
slightly consistently with the variation in P(ΔF) for these
methyl groups. The P(Oaxis

2 ) distributions for ILEδ are relatively
broader than those for ILEγ2, indicating a wide variation in the
conformational flexibility of ILEδ methyls in proteins in
accordance with a broader P(ΔF) distribution observed for
ILEδ residues.
The percentage, P%(Oaxis,†

2 ), of methyl groups of a given
residue type with Oaxis

2 less than a given value (Oaxis,†
2 ) can be

determined from P(Oaxis
2 ) using the following equation

Figure 12. Distributions of Oaxis
2 for (a) individual proteins, (b) overall, (c) different residue types are shown. P(Oaxis,EXP

2 ) (black), P(Oaxis,MD
2 ) (red),

and P(Oaxis,ABF
2 ) (blue).
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P%(Oaxis,†
2 ) increases nonlinearly (sigmoidal-type curve) with

Oaxis,†
2 for all classes of residue, and the calculated P%(Oaxis,†

2 )
versus Oaxis,†

2 curves almost reproduce the corresponding
experimental curves (Figure 13a). The rate of growth of

P%(Oaxis,†
2 ) with Oaxis,†

2 is different for different classes of
residues; P%(Oaxis,†

2 ) for Class-1 residues is negligible for Oaxis,†
2

< 0.5, while a significant number of Class-2 residues and ∼90%
of Class-3 residues have Oaxis,†

2 < 0.5. The percentage of methyl
groups with Oaxis

2 < 0.5 is greater for δ-methyls than that for γ-
methyls, indicating a relatively higher conformational flexibility
of δ-methyls than the γ-methyls in proteins.
Figure13b shows the correlation between ⟨Oaxis

2 ⟩ and ⟨⟨ΔF⟩⟩
(these averages were calculated by averaging over all residues of
a given type) for different residue types. ⟨Oaxis

2 ⟩ increases almost
linearly with ⟨⟨ΔF⟩⟩ and the calculated dependence of ⟨Oaxis

2 ⟩
on ⟨⟨ΔF⟩⟩ is consistent with that determined from the
experimental data. The ⟨Oaxis

2 ⟩ and ⟨⟨ΔF⟩⟩ for Class-1 residues
are higher than those for Class-2 residues, whereas Class-3
residues have the lowest ⟨Oaxis

2 ⟩ and ⟨⟨ΔF⟩⟩. NMR experiments
have shown a general increase in the width of P(Oaxis

2 ) and a
general decrease in the value of Oaxis

2 with increasing separation
of a methyl group from the main chain, suggesting that the
longer the side chain, the more variable is the dynamics.104

These experiments also demonstrated that P(Oaxis
2 ) for all δ-

methyl-containing residues (ILE, LEU) (Class-2) are similar
and are broader than those for all γ-methyl-containing residues
(VAL, THR) (Class-1), indicating that it is less likely for a
longer side chain to have a higher Oaxis

2 value. The higher values
of ⟨Oaxis

2 ⟩ and slower rate of growth of P% with Oaxis
2 observed

for Class-1 residues and the classification of residues based on
free energy barriers are consistent with these experimental
results.

Probability Flux and Conformational Entropy. When
classifying the side chains above based on ΔEmin/ΔEmax, only
the barriers neighboring individual rotamer states were
considered. However, the degree of conformational sampling
by a side chain is determined by whether successive rotamer
states are diffusive or not. A side chain having a diffusive
rotamer state with two nondiffusive adjacent rotamer states is
expected to have different motional parameters and thermody-
namic properties than a diffusive rotamer state surrounded by
other diffusive states. This information about how successive
diffusive rotamer states are correlated was absent in the
classification based on barrier distribution and ΔEmin/ΔEmax.
Using the principle of detailed balance, we now examine the

probability for a side chain to visit all rotamer states. There are
two possible closed loops of rotamer states by which a given
side chain can explore the conformational landscape: t → g+ →
g− → t (referred to here as the forward loop) and t → g− → g+

→ t (referred to here as the reverse loop). Each rotameric
transition in a loop obeys the principle of detailed balance; for
example, for the transition between t and g+ P(t)P(t → g+) =
P(g+)P(g+ → t), where P(t) and P(g+) are the equilibrium
probabilites of being in t and g+ states, respectively, and P(t →
g+) and P(g+ → t) are the transition probabilities for t → g+ and
g+ → t transitions, respectively. We define the probability flux
for the forward loop as JF = ∏i = 1

3 P(i)P(i → i + 1), where i =
1,2,3 denote t, g+, and g− states, respectively and P(3 → 4) =
P(3 → 1) due to periodicity of the conformational energy
profile. Similarly, the probability flux for the reverse loop is
defined as JR =∏i = 3

1 P(i)P(i→ i − 1) and here P(1→ 0) = P(1
→ 3). The equilibrium probability of being in state i is given by
P(i) = e−βFi(ϕ)/(∫ 0

2πe−βFi(ϕ) dϕ) and the transition probability
P(i → j) ∝ e−βΔFij where ΔFij is the free energy barrier
separating i and j states. The probability fluxes JF and JR depend
on the energies, Fi(ϕ), of the rotamer states and the barriers
separting the rotamer states.
The normalized forward probability flux, which varies from 0

to 1, is defined as follows,

=
⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

J
ln

ln

J

J

J

J

F
N

F

F
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F
max

F
min
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where JF
min and JF

max are the minimum and maximum values of JF
and JF

N denotes the normalized JF. The condition of detailed
balance, JF

N = JR
N, was verified for all residues (Figure S9 - SI).

The larger the value of JF
N the higher is the conformational

sampling. Figure 14a shows JF
N as a function of Oaxis

2 for different
residues of all proteins. JF

N increases with decreasing Oaxis
2 ;

residues with larger Oaxis
2 have smaller JF

N than that of residues
with smaller Oaxis

2 . The MET residues have highest JF
N ≈ 1.0, and

Class-2 residues have slightly higher JF
N than Class-1 residues at

all values of Oaxis
2 .

Figure 13. (a) Experimental (dashed lines) and MD-derived (solid
lines) correlation between P%(Oaxis

2 ) and Oaxis
2 shown for Class-1

(black), Class-2 (red), and Class-3 (green) residues (b) Correlation of
experimental ⟨Oaxis,EXP

2 ⟩ (filled triangle), MD-derived ⟨Oaxis,MD
2 ⟩ (filled

circle) with the average free energy barrier ⟨⟨ΔF⟩⟩ shown for different
residue types: MET (blue), ILEδ (maroon), LEUδ1 (black), LEUδ2

(red), ILEγ2 (green), VALγ1 (indigo), VALγ2 (violet), and THRγ2

(orange).
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The conformational entropy (Sconf) due to the reorientational
dynamics of the methyl symmetry axis also distinguishes
different classes of side chain in proteins. Using the correlation
between Sconf and Oaxis

2 and an assumption that the dynamics of
a given methyl group reports on local disorder around it, an
“entropy meter” was introduced recently to determine the
changes in the conformational entropy and the total binding
entropy of a protein upon binding to a ligand directly from the
average changes in residue-weighted Oaxis

2 .105,109,113 Since the
calculated Oaxis

2 reported here for any given methyl group is also
sensitive to its microenvironment, it is of interest to examine
the correlation between Sconf and Oaxis,ABF

2 . Figure 14b shows
Sconf versus Oaxis,ABF

2 . Sconf decreases with increasing Oaxis,ABF
2 and

their nonlinear dependence on each other is consistent with
experimental and other simulation studies.114,115 The MET
residues have the largest conformational entropy, around 8.5
cal/mol/K, while Sconf for other residues spans between 4 and 7
cal/mol/K. The Class-2 residues have slightly higher conforma-
tional entropy than Class-1 residues, especially for Oaxis,ABF

2 <
0.4. The difference in Sconf between Class-1 and Class-2 residues
can be attributed to the fact that the conformational landscape
for Class-1 residues consists of relatively higher free energy
barriers than those of Class-2 residues. The observation that
two side chains with the same Oaxis,ABF

2 but belonging to
different classes can have different Sconf is in accord with an
earlier investigation.115 The dependence of Sconf on Oaxis,ABF

2 for
different residue types is shown in Figure S10 (SI).
Correlation Between Oaxis

2 and Rotamer Populations.
The free energy profiles, F(ϕ), obtained from the ABF
simulations were used to determine the probability distribution
of ϕ, P(ϕ), for individual residues. P(ϕ) for all residues except
ALA consisted of three peaks corresponding to three rotamer

states. These rotamer states were classified into major,
intermediate, and minor states, depending on the intensities
of the corresponding P(ϕ) peaks; the highest- and lowest-
intensity peaks correspond, respectively, to the major and
minor states. Depending upon the nature of the nonbonded
interactions arising from the microenvironment surrounding a
side chain, any one of the t, g+, or g− states can be a major
rotamer state for the side chain. The statistical distribution of
the major rotamer states for different residue types in all
proteins investigated here is provided in Table S2 (“Statistics
on Side Chain Rotamer Sequences” section in the SI). For
instance, t is the major rotamer state for ∼83% of ILEδ, ∼ 67%
of MET, and ∼48% of LEUδ2 residues.
The relative population of the three rotamer states was

calculated using the following equation:

∫ρ ϕ ϕ=
ϕ π

ϕ π

−

+
P( ) di /3

/3

i

i

(16)

where ϕ1, ϕ2, and ϕ3 denote the values of ϕ for the major,
intermediate, and minor states, respectively, and ρ1, ρ2, and ρ3,
the corresponding populations. The values of ρi range from 0 to
1 and indicate the extent of conformational restriction of a
given side chain. A residue with ρ1 ≈ 1.0 is expected to exhibit
restricted motion mostly within a single rotamer state due to
greater steric hindrance, while side chains with 0.3 < ρ1 < 0.4
experience relatively less steric hindrance and visit all rotamer
states. The lowest possible value for ρ1 is 1/3 and occurs when
all three rotamer states are equally populated. The highest
possible value of ρ2 is 0.5, when both major and intermediate
rotamer states are equally populated with zero population in
the minor rotamer state.
Since both ρi and Oaxis

2 are related to the degree of
conformational flexibility of side chains, it is of interest to
examine any possible correlation between these two quantities.
Figure 15 shows the variation of Oaxis,ABF

2 with ρ1 and ρ2 for all

proteins. Regardless of the molecular weight and secondary
structures of proteins, a universal nonlinear correlation is
observed between Oaxis,ABF

2 and the populations of the rotamer
states for all proteins. A similar nonlinear correlation between
Oaxis

2 and ρ1 has been observed for protein eglin C.65 ρ1
increases with increasing Oaxis,ABF

2 , while ρ2 decreases with
Oaxis,ABF

2 .
There is some spread in the data for Oaxis,ABF

2 < 0.3 and ρ2 >
0.2. There are at least two reasons for this spread of data. The

Figure 14. (a) Variation of probability flux (JF
N) with Oaxis,ABF

2 and (b)
variation of conformational entropy (Sconf) with Oaxis,ABF

2 for different
classes of side chain of all proteins studied.

Figure 15. Dependence of Oaxis,ABF
2 on the populations of major (ρ1 -

open circles) and intermediate (ρ2 - filled circles) states color coded
for individual proteins.
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first is that the flexible side chains with Oaxis,ABF
2 < 0.3 exhibit

two types of rotamer transitions; in the first type a side chain
visits only the major and intermediate states (two-state
dynamics), while all three states are visited in the second
mechanism (three-state dynamics). Since ρ2 can take different
values depending on whether it follows two- or three-state
dynamics, this spreads the data in Figure 15. The other reason
is that the nature of the dependence of Oaxis,ABF

2 on ρi is different
for different residue types.
The relationship between Oaxis,ABF

2 and ρi was examined for
different residue types, and the results are presented in Figure
16 for all proteins under consideration. An asymmetric,

parabolic, nonlinear dependence of Oaxis,ABF
2 on ρ1 and ρ2 is

observed for all residue types of all proteins. Though the overall
parabolic pattern is seen for all residue types, the detailed
geometric features, such as the curvature and well depth, are
different for different residue types. The Oaxis,ABF

2 versus ρi data
were fitted using the following equation.

ρ ρ= − − + +O b b b b b( )( ) 0.5( )axis ABF,
2

0 1 2 1 2 (17)

The fitted parameters are listed in Table S1 (SI). The range of
Oaxis,ABF

2 , i.e., the difference between the maximum and
minimum values of Oaxis,ABF

2 , is different for different residue
types. A majority of residues have Oaxis,ABF

2 < 0.4 while Oaxis,ABF
2

for some residues fall between 0.4 and 0.7. Only a few THRγ2

and VALγ2 residues have Oaxis,ABF
2 > 0.7. The spread of data in

the region defined by Oaxis,ABF
2 < 0.3 and ρ2 > 0.2 is low for LEU

residues but higher for ILEγ2 and VALγ1. A thermodynamic
consequence of the spread of data for Oaxis,ABF

2 < 0.3 and ρ2 >
0.2 is that two residues having same Oaxis,ABF

2 can have different
conformational entropies depending on whether they follow

two- or three-state dynamics. A residue that visits all three
states is expected to have higher conformational entropy than
one that visits only two states.

■ CONCLUSIONS
Fast side chain conformational dynamics play a role in the
biological function of proteins.11,30,33,38,116,117 High-resolution
solution NMR spectroscopy uses side chain methyl spin probes
to determine the amplitudes and rates of site-specific fast
internal motions of proteins. In particular, the methyl axial
order parameter (Oaxis

2 ), which quantifies the spatial restriction
of angular motion of the methyl symmetry axis, is commonly
used to establish a molecular-level connection between the
atomist ic dynamics and thermodynamics of pro-
teins.5,11,13,30,38,40,44,46,47,49,50,63,65,105,113,118 Recognized as a
proxy for protein conformational entropy, Oaxis

2 is used as an
“entropy-meter” to measure and elucidate the essential role of
the side chain entropy in many biological processes including
protein−ligand binding, molecular recognition, folding and
allosteric regulation.109,113,119

Realizing the fact that the side chain dynamics and
thermodynamics are governed by the underlying conforma-
tional energy landscape, the present study employs an
enhanced sampling free energy method (adaptive biasing
force) and molecular dynamics simulation to characterize fast
side chain dynamics by examining the conformational energy
landscape of individual residues of proteins. A set of eight
proteins with different molecular weights and secondary
structures was chosen, and the side chain conformational free
energy profiles for all methyl-bearing residues were computed
using ABF. The conformational energy surface for each residue
consists of three stable rotamer states separated by energy
barriers of differing heights. The features of the free energy
profiles (such as the barrier heights and rotamer state energies)
differ significantly within and among residue types. The
activation energy for inter-rotamer-state conversion in proteins
ranges from ∼0.3 to ∼12.0 kcal/mol. The barriers separating
the rotamer states follow a trimodal distribution with a major
peak at ∼5.0 kcal/mol and two shoulders at ∼3 and ∼7.5 kcal/
mol. This trimodal distribution was found to be universal
among all proteins under consideration, indicating the existence
of globally favored and disfavored barriers for side chain
dynamics in proteins.
The relative magnitudes of the pair of barriers surrounding

any given side chain rotamer state were used to determine
whether the rotamer state is diffusive or restricted; a diffusive
rotamer state favors interstate conversion, while restrictive
states do not. A side chain with no diffusive rotamer state
exhibits a higher Oaxis

2 , while a side chain with all three diffusive
states has a lower Oaxis

2 . The free energy barrier-based
hierarchical grading of rotamer states enables us to group
protein side chains into three dynamic classes: Class-1 (VALγ1,
VALγ2, THRγ2, and ILEγ2), Class-2 (LEUδ1, LEUδ2, and ILEδ),
and Class-3 (MET). Two methyl-bearing side chains having the
same Oaxis

2 but belonging to different classes have differing
conformational entropy; the side chains of Class-2 exhibit
higher entropy than Class-1 residues. These results provide
conformational landscape-based evidence for the two-parame-
ter classification (based upon conformational entropy and Oaxis

2 )
of protein side chains reported earlier.115 The Oaxis

2 correlate
nonlinearly with the side chain rotamer populations and the
conformational entropy, and these correlations were found to
be universal among all proteins studied here.

Figure 16. Dependence of Oaxis,ABF
2 on the populations of major (ρ1 -

open circles) and intermediate (ρ2 - filled circles) states for different
types of residue from all proteins using the same color code.
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As Oaxis
2 -based high-resolution NMR studies continue to

evolve in important ways to elucidate the structure, dynamics
and thermodynamics of proteins in natively folded, unfolded,
and ‘invisible’ excited states,11,46,120,121 the present study adds
to the growing knowledge about the characteristics of fast side
chain motions in proteins. A major advantage of the
computational method proposed here is its ability to directly
relate Oaxis

2 , Sconf, and the rotamer populations with the
conformational landscapes of proteins. The landscape-based
interpretation of motional and thermodynamic parameters
readily describes the heterogeneous distribution of Oaxis

2 in
proteins in terms of a broader distribution of activation barriers
separating the rotamer states.
Many biological processes, including ligand binding and

allosteric regulation, result in a significant modulation of the
protein energy landscape leading to changes in the side chain
dynamics, thermodynamics, and rotamer populations.35,86,105

The characterization of the evolution of side chain rotamer
populations and flexibilities at different stages of biological
processes is an active area of research, and the nonlinear
dependence of Oaxis

2 on rotamer populations established here
suggests that the changes in Oaxis

2 and ρ due to perturbations
(including ligand binding, protein−protein association, external
pressure) are governed by a universal parabolic correlation
between these two quantities. The present study has illustrated
the use of advanced enhanced sampling methods to gain
complementary molecular-level insights into fast conforma-
tional dynamics of proteins.
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